I Fake - Footloose d Youtube I Fake - Footloose d Youtube
User: Pass:
– Buy Id Card Docs World Fake Online Usa

I Fake - Footloose d Youtube

Built in spare time by
Buy Fake Identification Maine Id Scannable @karpathy to accelerate research.
Serving last 75883 papers from cs.[CV|CL|LG|AI|NE]/stat.ML
At Quality New Avail Directory Through Ids The Joobaa Novelty Id Utmost Suitable Prices
• mclovin Browse -imgrum About Mclovin At Images Instagram
Footloose - Fake I.D - YouTube
MegaFace: A Million Faces for Recognition at Scale
D. Miller, E. Brossard, S. Seitz, I. Kemelmacher-Shlizerman
9/7/2015 (v1: 5/8/2015) cs.CV
Please see http://megaface.cs.washington.edu/ for code and data
Recent face recognition experiments on the LFW benchmark show that face recognition is performing stunningly well, surpassing human recognition rates. In this paper, we study face recognition at scale. Specifically, we have collected from Flickr a \textbf{Million} faces and evaluated state of the art face recognition algorithms on this dataset. We found that the performance of algorithms varies--while all perform great on LFW, once evaluated at scale recognition rates drop drastically for most algorithms. Interestingly, deep learning based approach by \cite{schroff2015facenet} performs much better, but still gets less robust at scale. We consider both verification and identification problems, and evaluate how pose affects recognition at scale. Moreover, we ran an extensive human study on Mechanical Turk to evaluate human recognition at scale, and report results. All the photos are creative commons photos and is released at \small{\url{http://megaface.cs.washington.edu/}} for research and further experiments.
Most similar papers:
I Fake - Footloose d
I Fake - Footloose d
I Fake - Footloose d Recent face recognition experiments on a major benchmark LFW show stunning performance--a number of algorithms achieve near to perfect score, surpassing human recognition rates. In this paper, we advocate evaluations at the million scale (LFW includes only 13K photos of 5K people). To this end, we have assembled the MegaFace dataset and created the first MegaFace challenge. Our dataset includes One Million photos that capture more than 690K different individuals. The challenge evaluates performance of algorithms with increasing numbers of distractors (going from 10 to 1M) in the gallery set. We present both identification and verification performance, evaluate performance with respect to pose and a person's age, and compare as a function of training data size (number of photos and people). We report results of state of the art and baseline algorithms. Our key observations are that testing at the million scale reveals big performance differences (of algorithms that perform similarly well on smaller scale) and that age invariant recognition as well as pose are still challenging for most. The MegaFace dataset, baseline code, and evaluation scripts, are all publicly released for further experimentations at: megaface.cs.washington.edu.
Face recognition has the perception of a solved problem, however when tested at the million-scale exhibits dramatic variation in accuracies across the different algorithms. Are the algorithms very different? Is access to good/big training data their secret weapon? Where should face recognition improve? To address those questions, we created a benchmark, MF2, that requires all algorithms to be trained on same data, and tested at the million scale. MF2 is a public large-scale set with 672K identities and 4.7M photos created with the goal to level playing field for large scale face recognition. We contrast our results with findings from the other two large-scale benchmarks MegaFace Challenge and MS-Celebs-1M where groups were allowed to train on any private/public/big/small set. Some key discoveries: 1) algorithms, trained on MF2, were able to achieve state of the art and comparable results to algorithms trained on massive private sets, 2) some outperformed themselves once trained on MF2, 3) invariance to aging suffers from low accuracies as in MegaFace, identifying the need for larger age variations possibly within identities or adjustment of algorithms in future testings.
UMDFaces: An Annotated Face Dataset for Training Deep Networks
Online About Easy – Us Legal Documents, Anirudh Nanduri, Carlos Castillo, Rajeev Ranjan, Rama Chellappa
5/21/2017 (v1: 11/4/2016) cs.CV
Updates: Verified keypoints, removed duplicate subjects, released test protocol
Recent progress in face detection (including keypoint detection), and recognition is mainly being driven by (i) deeper convolutional neural network architectures, and (ii) larger datasets. However, most of the large datasets are maintained by private companies and are not publicly available. The academic computer vision community needs larger and more varied datasets to make further progress. In this paper we introduce a new face dataset, called UMDFaces, which has 367,888 annotated faces of 8,277 subjects. We also introduce a new face recognition evaluation protocol which will help advance the state-of-the-art in this area. We discuss how a large dataset can be collected and annotated using human annotators and deep networks. We provide human curated bounding boxes for faces. We also provide estimated pose (roll, pitch and yaw), locations of twenty-one key-points and gender information generated by a pre-trained neural network. In addition, the quality of keypoint annotations has been verified by humans for about 115,000 images. Finally, we compare the quality of the dataset with other publicly available face datasets at similar scales.
I Fake - Footloose d
Labeled Faces in the Wild (LFW) database has been widely utilized as the benchmark of unconstrained face verification and due to big data driven machine learning methods, the performance on the database approaches nearly 100%. However, we argue that this accuracy may be too optimistic because of some limiting factors. Besides different poses, illuminations, occlusions and expressions, cross-age face is another challenge in face recognition. Different ages of the same person result in large intra-class variations and aging process is unavoidable in real world face verification. However, LFW does not pay much attention on it. Thereby we construct a Cross-Age LFW (CALFW) which deliberately searches and selects 3,000 positive face pairs with age gaps to add aging process intra-class variance. Negative pairs with same gender and race are also selected to reduce the influence of attribute difference between positive/negative pairs and achieve face verification instead of attributes classification. We evaluate several metric learning and deep learning methods on the new database. Compared to the accuracy on LFW, the accuracy drops about 10%-17% on CALFW.
Pushing by big data and deep convolutional neural network (CNN), the performance of face recognition is becoming comparable to human. Using private large scale training datasets, several groups achieve very high performance on LFW, i.e., 97% to 99%. While there are many open source implementations of CNN, none of large scale face dataset is publicly available. The current situation in the field of face recognition is that data is more important than algorithm. To solve this problem, this paper proposes a semi-automatical way to collect face images from Internet and builds a large scale dataset containing about 10,000 subjects and 500,000 images, called CASIAWebFace. Based on the database, we use a 11-layer CNN to learn discriminative representation and obtain state-of-theart accuracy on LFW and YTF. The publication of CASIAWebFace will attract more research groups entering this field and accelerate the development of face recognition in the wild.
Face Search at Scale: 80 Million Gallery
Dayong Wang, Charles Otto, 1998 cdn Index Of 11 515
I Fake - Footloose d
7/28/2015 (v1: 7/26/2015) cs.CV
14 pages, 16 figures
I Fake - Footloose d
Due to the prevalence of social media websites, one challenge facing computer vision researchers is to devise methods to process and search for persons of interest among the billions of shared photos on these websites. Facebook revealed in a 2013 white paper that its users have uploaded more than 250 billion photos, and are uploading 350 million new photos each day. Due to this humongous amount of data, large-scale face search for mining web images is both important and challenging. Despite significant progress in face recognition, searching a large collection of unconstrained face images has not been adequately addressed. To address this challenge, we propose a face search system which combines a fast search procedure, coupled with a state-of-the-art commercial off the shelf (COTS) matcher, in a cascaded framework. Given a probe face, we first filter the large gallery of photos to find the top-k most similar faces using deep features generated from a convolutional neural network. The k candidates are re-ranked by combining similarities from deep features and the COTS matcher. We evaluate the proposed face search system on a gallery containing 80 million web-downloaded face images. Experimental results demonstrate that the deep features are competitive with state-of-the-art methods on unconstrained face recognition benchmarks (LFW and IJB-A). Further, the proposed face search system offers an excellent trade-off between accuracy and scalability on datasets consisting of millions of images. Additionally, in an experiment involving searching for face images of the Tsarnaev brothers, convicted of the Boston Marathon bombing, the proposed face search system could find the younger brother's (Dzhokhar Tsarnaev) photo at rank 1 in 1 second on a 5M gallery and at rank 8 in 7 seconds on an 80M gallery.
The Do's and Don'ts for CNN-based Face Verification
Online About Easy – Us Legal Documents, Carlos Castillo, Rajeev Ranjan, Rama Chellappa
I Fake - Footloose d
9/6/2017 (v1: 5/21/2017) cs.CV
10 pages including references, added more experiments on deeper vs wider dataset (section 3.2)
I Fake - Footloose d
I Fake - Footloose d
While the research community appears to have developed a consensus on the methods of acquiring annotated data, design and training of CNNs, many questions still remain to be answered. In this paper, we explore the following questions that are critical to face recognition research: (i) Can we train on still images and expect the systems to work on videos? (ii) Are deeper datasets better than wider datasets? (iii) Does adding label noise lead to improvement in performance of deep networks? (iv) Is alignment needed for face recognition? We address these questions by training CNNs using CASIA-WebFace, UMDFaces, and a new video dataset and testing on YouTube- Faces, IJB-A and a disjoint portion of UMDFaces datasets. Our new data set, which will be made publicly available, has 22,075 videos and 3,735,476 human annotated frames extracted from them.
Surveillance Face Recognition Challenge
Zhiyi Cheng, Xiatian Zhu, Shaogang Gong
8/29/2018 (v1: 4/25/2018) cs.CVId Fake Table… Id Id Table… Id Table… Fake Table… Fake Fake Fake
I Fake - Footloose d
I Fake - Footloose d The QMUL-SurvFace challenge is publicly available at https://qmul-survface.github.io/
Face recognition (FR) is one of the most extensively investigated problems in computer vision. Significant progress in FR has been made due to the recent introduction of the larger scale FR challenges, particularly with constrained social media web images, e.g. high-resolution photos of celebrity faces taken by professional photo-journalists. However, the more challenging FR in unconstrained and low-resolution surveillance images remains largely under-studied. To facilitate more studies on developing FR models that are effective and robust for low-resolution surveillance facial images, we introduce a new Surveillance Face Recognition Challenge, which we call the QMUL-SurvFace benchmark. This new benchmark is the largest and more importantly the only true surveillance FR benchmark to our best knowledge, where low-resolution images are not synthesised by artificial down-sampling of native high-resolution images. This challenge contains 463,507 face images of 15,573 distinct identities captured in real-world uncooperative surveillance scenes over wide space and time. As a consequence, it presents an extremely challenging FR benchmark. We benchmark the FR performance on this challenge using five representative deep learning face recognition models, in comparison to existing benchmarks. We show that the current state of the arts are still far from being satisfactory to tackle the under-investigated surveillance FR problem in practical forensic scenarios. Face recognition is generally more difficult in an open-set setting which is typical for surveillance scenarios, owing to a large number of non-target people (distractors) appearing open spaced scenes. This is evidently so that on the new Surveillance FR Challenge, the top-performing CentreFace deep learning FR model on the MegaFace benchmark can now only achieve 13.2% success rate (at Rank-20) at a 10% false alarm rate.
Deep networks trained on millions of facial images are believed to be closely approaching human-level performance in face recognition. However, open world face recognition still remains a challenge. Although, 3D face recognition has an inherent edge over its 2D counterpart, it has not benefited from the recent developments in deep learning due to the unavailability of large training as well as large test datasets. Recognition accuracies have already saturated on existing 3D face datasets due to their small gallery sizes. Unlike 2D photographs, 3D facial scans cannot be sourced from the web causing a bottleneck in the development of deep 3D face recognition networks and datasets. In this backdrop, we propose a method for generating a large corpus of labeled 3D face identities and their multiple instances for training and a protocol for merging the most challenging existing 3D datasets for testing. We also propose the first deep CNN model designed specifically for 3D face recognition and trained on 3.1 Million 3D facial scans of 100K identities. Our test dataset comprises 1,853 identities with a single 3D scan in the gallery and another 31K scans as probes, which is several orders of magnitude larger than existing ones. Without fine tuning on this dataset, our network already outperforms state of the art face recognition by over 10%. We fine tune our network on the gallery set to perform end-to-end large scale 3D face recognition which further improves accuracy. Finally, we show the efficacy of our method for the open world face recognition problem.